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Abstract

Elastic stability theory is applied to description of tensile strength variation in steel members due to variation of

initial imperfections, despite criticism on the occurrence of unloading due to plastic instability. In numerical simulation

of such members, the maximum load is attained at a limit point or a hilltop bifurcation point. This load is not much

different for either type of point; hence, little attention has been paid to the type of points up to now. Yet it is note-

worthy that these two types of points follow different imperfection sensitivity laws within the framework of elastic

stability theory. Numerical experiments on steel members undergoing plastic deformation are conducted to ensure that

empirical imperfection sensitivities for these members agree well with those sensitivity laws. This assesses applicability

of elastic stability theory to description of plastic instability behaviors of steel members. Moreover, empirical histo-

grams of steel members obtained through Monte-Carlo simulations are compared with theoretical probabilities of

maximum loads, which are a normal distribution for the limit point and a Weibull-like one for the hilltop point.

Therefore, elastic stability theory is useful to describe tensile strength variation of steel members. � 2002 Elsevier

Science Ltd. All rights reserved.
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1. Introduction

A considerable number of studies have been made on limit behavior of a tensile steel specimen under-
going plastic instability (see Tomita, 1994; Petryk, 1997; Tvergaard, 1999 for comprehensive reviews). In
numerical simulation of this behavior, it is observed that a bifurcation point exists just after a limit point on
a load–displacement curve. For a longer member, the limit point and the bifurcation point tend to coincide
(Needleman, 1972; Hutchinson and Miles, 1974; Hill and Hutchinson, 1975; Burke and Nix, 1979). As
called hilltop bifurcation point approximated such a pair of critical points. This hilltop point was inves-
tigated using elastic stability theory in pioneering work by Thompson and Schorrock (1975).
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It is noteworthy that the maximum load is subject to probabilistic variation due to probabilistic scatter
of initial imperfections. A hint for describing this variation is found in probabilistic studies of the buckling
of structures (see e.g., Bolotin, 1984; Augusti et al., 1984; Lindberg and Florence, 1987; Ben-Haim and
Elishakoff, 1990; Elishakoff et al., 1994 for textbooks).
The first-order second-moment method was employed to replace the Monte-Carlo method for normally

distributed initial imperfections (e.g., Karadeniz et al., 1982; Elishakoff et al., 1987; Arbocz and Hol, 1991).
Roorda and Hansen (1972) applied an imperfection sensitivity law to a single mode normally distributed
initial imperfection. A procedure to obtain the probability density function of critical loads for a system
with various initial imperfections with known probabilistic characteristics was proposed in Murota and
Ikeda (1992) and Ikeda and Murota (1993), and has recently been extended to the hilltop bifurcation in
Ikeda et al. (in press).
In this paper, we search for applicability of elastic stability theory for description of imperfection sen-

sitivity and probabilistic variation of tensile strengths of steel members. Application of elastic stability
theory to a completely different problem, plastic instability behavior, may invite criticism on the possibility
of unloading, which in mathematics means lack of differentiability of the governing equation. Nonetheless,
our numerical study demonstrates that such a lack does not significantly influence imperfection sensitivities
of steel members.
In Section 2, we review the imperfection sensitivity laws (see Ikeda et al., in press). In Section 3, a series

of numerical analyses is conducted to investigate perfect and imperfect behaviors of steel members (spec-
imens) undergoing plastic deformation and, in turn, to discover their empirical imperfection sensitivities.
First, we investigate the size effect for perfect members with a few different aspect ratios; maximum load for
the aspect ratio of 2 is governed by a limit point and maximum load for 10 is approximated by a hilltop
bifurcation point. Next, empirical imperfection sensitivities of these members for several given patterns of
imperfection are found to follow feasibly the theoretical sensitivity laws presented in Section 2; this assesses
the applicability of elastic stability theory. In Section 4, when initial imperfections are subject to a multi-
variate normal distribution, it has been derived theoretically that maximum load probabilistic variation
follows a normal distribution for the limit point and a Weibull-like one for the hilltop bifurcation point.
These theoretical distributions are compared with the histograms of the maximum loads of steel members
computed for normally distributed initial imperfections. Thus probabilistic variation of strength, which is
dependent on the types of critical points, can be described by elastic stability theory in a systematic manner.

2. Theory

In this section, we review elastic bifurcation theory on a limit point and a hilltop bifurcation point
with an emphasis on imperfection sensitivity laws (cf., Thompson and Hunt, 1973, 1984; Thompson and
Schorrock, 1975; Ikeda et al., in press).

2.1. General framework

General framework of the theory employed in this paper is presented as a summary of Ikeda and Murota
(1990, in press).
We consider a system of nonlinear equilibrium or governing equations

Fðu; f ; vÞ ¼ 0; ð1Þ

where u indicates the N-dimensional unknown vector, f denotes the loading parameter, and v indicates the
p-dimensional imperfection parameter vector. We assume F is sufficiently smooth and Jacobian (tangent
stiffness) matrix J ¼ oF=ou is symmetric.
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We have

det Jc ¼ 0 ð2Þ

at a critical point ðuc; fcÞ, where the subscript ð�Þc denotes that the variable in the parentheses is associated
with the critical point. Let fgi j i ¼ 1; . . . ;Mg be a family of independent eigenvectors of Jc such that Jcgi ¼ 0
ði ¼ 1; . . . ;MÞ, where M is the multiplicity of the critical point ðuc; fcÞ, which is called simple if M ¼ 1 and
double if M ¼ 2.
In our formulation, the imperfection parameter vector v is expressed as

v ¼ v0 þ �d; ð3Þ

where v0 is the nominal (standard) value of v (the superscript ð�Þ0 denotes a variable associated with the
perfect system), d is called the ‘‘imperfection pattern vector,’’ and � denotes the magnitude of initial im-
perfection (� can be negative). Eq. (3) is useful in describing deviation from nominal (standard) values of
various kinds of parameters, such as cross section, member length, node location, and so on. Furthermore,
use of d is vital in description of probabilistic variation of critical loads in Section 4.
We further consider a critical point ðu0c ; f 0c Þ for the perfect system with v ¼ v0, where ð�Þ0c denotes the

variable associated with a critical point for the perfect system. An N 	 p constant matrix, called the im-
perfection sensitivity matrix,

B0c ¼
oF

ov
ðu0c ; f 0c ; v0Þ; ð4Þ

evaluated at this point plays a crucial role in describing influence of imperfections.
In the neighborhood of the critical point ðu0c ; f 0c Þ for the perfect system, we express the nodal dis-

placement u as

u ¼ u0c þ
XN
j¼1

wjgj ð5Þ

in terms of incremental variables ðwj j j ¼ 1; . . . ;NÞ, and the bifurcation parameter f as

f ¼ f 0c þ ~ff ;

where ~ff represents the increment of f from the critical point for the perfect system. We denote by
w ¼ ðw1; . . . ;wMÞT a vector associated with the kernel space of J 0c ðð�Þ

T
denotes the transpose of a matrix or

vectorÞ.
By means of the Liapunov–Schmidt reduction, the system of Eq. (1) is simplified to the reduced system

of bifurcation equations for w ¼ ðw1; . . . ;wMÞT (cf., Section A.1 in Appendix A)bFF ðw; ~ff ; �Þ ¼ 0: ð6Þ

The criticality condition det Jðuc; fc; vÞ ¼ 0 in Eq. (2) is equivalent to

det bJJ ðw; ~ff ; �Þ ¼ 0; ð7Þ

where bJJ ðw; ~ff ; �Þ ¼ obFF=owðw; ~ff ; �Þ is the Jacobian matrix of the reduced system of bifurcation equations.

2.2. Imperfection sensitivity laws

For a limit point and a hilltop bifurcation point, we derive imperfection sensitivity laws by determining
the location ðwc; ~ffcÞ ¼ ðwcð�Þ; ~ffcð�ÞÞ of the critical point of an imperfect system with � 6¼ 0 as a simultaneous
solution of Eqs. (6) and (7).

S. Okazawa et al. / International Journal of Solids and Structures 39 (2002) 1651–1671 1653



2.2.1. Limit point
For a limit point, the bifurcation equation (6) becomes (cf., Ikeda and Murota, in press)

bFF ðw1; ~ff ; �Þ ¼ A200w21 þ A010 ~ff þ A001�þ A101w1�þ A110w1 ~ff þ h:o:t: ¼ 0; ð8Þ

where h.o.t. denotes higher-order terms, and coefficients Aijk are defined by

Aijk ¼
1

i!j!k!
oiþjþk bFF

owi
1o

~ff jo�k
ð0; 0; 0Þ; i; j; k ¼ 0; 1; . . .

In particular, coefficient A001, which plays a key role in the present formulation, is expressed as

A001 ¼ gT1B
0
cd: ð9Þ

It is assumed that A001 6¼ 0 for some d, i.e., gT1B
0
c 6¼ 0T. In addition, we have

A200 ¼
1

2

o2�FF1
ow21

 !0
c

; A010 ¼
o�FF1
o ~ff

 !0
c

with

�FFi ¼ �FFiðw1; . . . ;wN ; ~ff ; �Þ ¼ gTi Fðu0c þ
XN
j¼1

wjgj; f
0
c þ ~ff ; v0 þ �dÞ; i ¼ 1; . . . ;N : ð10Þ

The criticality condition (7) for the bifurcation equation (8) is evaluated as

obFF
ow1

ðw1; ~ff ; �Þ ¼ 2A200w1 þ A101�þ A110 ~ff þ h:o:t: ¼ 0: ð11Þ

We hereafter consider a case of practical importance where the system in question becomes unstable at
a maximum point of f, for which

A200 < 0; A010 < 0: ð12Þ

By solving simultaneously Eqs. (8) and (11), we can obtain the imperfection sensitivity law for the critical
load

~ffc � CA001� ð13Þ

(where C ¼ �1=A010 > 0 by Eq. (13)) and the imperfection sensitivity law for the critical displacement

w1c � � 1

2A200A010
ðA101A010 � A001A110Þ�: ð14Þ

Eq. (13) indicates that, when A001 6¼ 0, the critical load fc increases or decreases with the order of �. For a
particular imperfection pattern d satisfying A001 ¼ gT1B

0
cd ¼ 0, as in Section 3.4.1, fc increases or decreases

with a higher order, say �2.

2.2.2. Hilltop bifurcation point
Imperfection sensitivity laws of a hilltop bifurcation point are presented here as a summary of Ikeda

et al. (in press). We consider a hilltop bifurcation point, which is defined as a double critical point (M ¼ 2)
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occurring as a coincidence of a limit point and a pitchfork bifurcation point. In addition, the pitchfork
bifurcation point is assumed to have a trivial solution. 1

The system of bifurcation Eq. (6) for the hilltop bifurcation point for a potential system becomesbFF1ðw1;w2; ~ff ; �Þ ¼ A3000w31 þ 2B2000w1w2 þ A1010w1 ~ff þ A0001�þ h:o:t: ¼ 0; ð15Þ

bFF2ðw1;w2; ~ff ; �Þ ¼ B2000w21 þ B0200w22 þ B0010 ~ff þ B0001�þ h:o:t: ¼ 0; ð16Þ

where Eq. (15) is associated with the hilltop point and Eq. (16) with the limit point. One can see the
presence of a trivial solution w1 ¼ 0 in Eq. (15) for the perfect system with � ¼ 0. Note that A1100 ¼ 2B2000 in
Eq. (15). In Eqs. (15) and (16), although infinitely many order terms are to be included in principle, we
express explicitly only the leading terms, which govern asymptotic behavior near the hilltop point (for
example, w31 is the leading term of w31 ~ff , w

3
1�, w

5
1, etc.). Coefficients in Eqs. (15) and (16) are given by

A3000 ¼
1

6

o3�FF1
ow31

0@ �
XN
j¼3

1

2kj

o2�FF1
ow1owj

 !21A0

c

;

A1100 ¼
o2�FF1

ow1ow2

 !0
c

;

A1010 ¼
o2�FF1
ow1of

 
�
XN
j¼3

1

kj

o�FFj

o ~ff

o2�FF1
ow1owj

!0
c

;

B2000 ¼
1

2

o2�FF2
ow21

 !0
c

; B0200 ¼
1

2

o2�FF2
ow22

 !0
c

;

B0010 ¼
o�FF2
o ~ff

 !0
c

; A0001 ¼ gT1B
0
cd; B0001 ¼ gT2B

0
cd; ð17Þ

where ð�Þ0c denotes the evaluation at the hilltop point at ðw1;w2; ~ff ; �Þ ¼ ð0; 0; 0; 0Þ and �FFi ði ¼ 1; 2Þ are de-
fined by Eq. (10).
We assume that A0001 6¼ 0 and B0001 6¼ 0 for some d, i.e., gTi B

0
c 6¼ 0

T ði ¼ 1; 2Þ. The coefficient A0001 ¼
gT1B

0
cd for imperfection magnitude � in the bifurcation equation (15) of the pitchfork bifurcation point

denotes the component of d projected on B0
T

c g1. The vector B
0T

c g1, in this sense, represents an imperfection
pattern associated with the pitchfork bifurcation point. The vector B0

T

c g2, which contributes to Eq. (16) via
B0001 ¼ gT2B

0
cd, denotes an imperfection pattern for the limit point.

The Jacobian matrix becomes

bJJ ðw1;w2; ~ff ; �Þ ¼ 3A3000w21 þ 2B2000w2 þ A1010 ~ff 2B2000w1
2B2000w1 2B0200w2

	 

þ h:o:t: ð18Þ

Note that some leading terms that do not influence resulting formulas have been contained in h.o.t. in
Eq. (18).

1 For a pitchfork bifurcation point, the bifurcation equation in general takes the form of F̂F ðw1; ~ff ; �Þ ¼ A300w31 þ A110w1 ~ff þ A020 ~ff 2þ
A001�þ h:o:t: ¼ 0, which has a trivial solution w ¼ 0 when A020 ¼ 0.
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We choose w2 such that

w2 < 0: loading from the hilltop point;
w2 > 0: unloading from the hilltop point:

�
We consider the most customary case in practice where the system in question has a rising main path and

becomes unstable at a hilltop bifurcation point with a declining bifurcation path. Then, we have

B0010 < 0; B2000 < 0; B0200 < 0: ð19Þ

We focus on the limit point on an imperfect path that is close to the rising main path. For this point, we
have an imperfection sensitivity law 2 for the critical load

~ffc � �C1jA0001�j þ C2B0001�; ð20Þ

and imperfection sensitivity laws for critical displacements

w1c � C3jA0001�j1=2; w2c � �C4jA0001�j1=2; ð21Þ

where Ci ði ¼ 1; . . . ; 4Þ are constants defined by

C1 ¼
signðB2000Þ

B0010

B0200
B2000

	 
1=2
> 0; C2 ¼ � 1

B0010
> 0; ð22Þ

C3 ¼ �signðA0001�Þ
B0200
4B32000

	 
1=4
; C4 ¼

1

ð4B2000B0200Þ1=4
> 0: ð23Þ

Here sign ð�Þ denotes the sign of the variable therein.

3. Elastic–plastic bifurcation analyses

We investigate applicability of the imperfection sensitivity laws presented in Section 2 to bifurcation
behavior of steel members subjected to uniform tension. Numerical analyses are conducted on a rectangular
domain illustrated in Fig. 1. By imposing several geometrical initial imperfections, we evaluate empirically
imperfection sensitivities of this domain and describe them with use of imperfection sensitivity laws pre-
sented in Section 2. Note that imperfection patterns employed here are more pedagogic than practical.

3.1. Conditions for analyses

Standard finite element formulation is employed for finite-strain elastic–plastic analyses. We analyze
only a fourth of the rectangular domain as shown in Fig. 1 by imposing symmetry conditions. The rect-
angular domain is assumed to be under a plane strain condition and isotropic response described by the
classical J2-flow theory with isotropic strain hardening. We employ the hypoelastic constitutive law, which
relates the Jaumann rate of Kirchhoff stress, s

$
, to the spatial rate-deformation tensor D by s

$ ¼ cep : D.
Here, the symmetric, elastic–plastic moduli cep are given by Eq. (A.14) in Section A.2 in Appendix A, in
which formulation details are resolved. The selective reduced integration scheme is employed to prevent
incompressibility locking for plastic deformation.

2 The imperfection sensitivity laws originally obtained by Thompson and Schorrock (1975) correspond to the case of B0001 ¼ 0.
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Material properties used in the analyses are chosen as follows: Young’s modulus E ¼ 200 GPa and
Poisson’s ratio m ¼ 0:333 for elasticity. For plastic hardening, a power law

�rr ¼ rY 1

 
þ �eep

eY

!0:0625
> 0; ð24Þ

is utilized, where the effective plastic strain �eep is assumed to be an independent variable. We choose
eY ¼ rY=E ¼ 1=500 and the initial yield stress rY ¼ 400 MPa.

3.2. Characterization of strength

We performed plastic bifurcation analyses of the rectangular domain for a few aspect ratios of L=W ¼
2–10 to obtain load–displacement curves shown in Fig. 2. Fig. 3 shows finite element models (L=W ¼ 2 and
10), which have a sufficient number of quadrilateral elements with standard bi-linear shape functions. Limit
point locations are identical for all aspect ratios and are denoted in this figure by a solid circle. As shown,
the first bifurcation points, denoted by open circles, approach the limit point as the specimen becomes

Fig. 2. Normalized load–displacement curves with L=W ¼ 2, 4, 6, 8, 10 (P: applied load; Að¼ W Þ: initial cross section; rY: yields stress;
u: axial displacement; L: member length).

Fig. 1. Rectangular domain for numerical analyses.
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slender (see e.g., Needleman, 1972 and Burke and Nix, 1979). The critical load at the pitchfork bifurcation
point for the aspect ratio of L=W ¼ 10 is 0.2% smaller than the maximum load at the limit point. Hence, the
force–displacement curve for L=W ¼ 10 is used to approximate the hilltop bifurcation point.
We consider the following two cases: Case A with the aspect ratio of L=W ¼ 2 for a limit point, and Case

B with L=W ¼ 10 that approximates a hilltop bifurcation point. For both cases, the critical load is f 0c ¼
1086 kN.
Figs. 4 and 5 show deformation progress in those perfect members (Cases A and B) after bifurcation. So-

called diffuse necking is observed along with non-uniform plastic strain distribution at the center of each
member. As load increases, the plastic strain tends to intensify at the center, and unloaded parts spread
from each edge to the center. These are typical deformation characteristics for steel members under the
plane strain condition (see e.g., Burke and Nix, 1979; Tvergaard et al., 1981).
Since strain softening is excluded in material characterization for plasticity and a sufficiently large

number of finite elements is employed, the mesh dependency problem can be avoided to some extent (cf.,

Fig. 3. FE meshes.

Fig. 4. Progress of deformation in steel members for the limit point (Case A) (u: axial displacement; L: member length; NL:P=ðArYÞ;
P: applied load; Að¼ W Þ: initial cross section; rY: yields stress).
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Tvergaard (1999) for an account of mesh dependency). However, actual metal reveals softening behavior in
elastic-plastic material characteristics; therefore, appropriate constitutive models may be involved for more
realistic simulation of post-peak (bifurcation) behavior. Nonetheless, these issues will not alter peak be-
havior, which is the main concern of this paper.

3.3. Imperfect behaviors

Imperfect behaviors for Cases A and B are investigated by employing two constant imperfection patterns
d ¼ d1 and d2 shown in Fig. 6 with a few imperfection magnitudes 
 � ¼ 0:0–0:1. Note that initial

Fig. 5. Progress of deformation in steel members for the hilltop point (Case B) (u: axial displacement; L: member length; NL:P=ðArYÞ;
P: applied load; Að¼ W Þ: initial cross section; rY: yields stress).

Fig. 6. Imperfection patterns imposed on members (� ¼ 0:0 � 0:1).

S. Okazawa et al. / International Journal of Solids and Structures 39 (2002) 1651–1671 1659



imperfection patterns employed have fourfold symmetry. Use of such symmetry is based on the experi-
mental observation that necking with fourfold symmetry is the most dominant bifurcation mode in tension
tests of steel members.
The pattern d ¼ d1 has both volumetric and harmonic modes. Therefore, it is influential on A001, A0001

and B0001 in Eqs. (9) and (17). A001 6¼ 0 holds for Case A associated with the limit point (cf., Section 2.2.1),
and A0001 6¼ 0 and B0001 6¼ 0 for Case B associated with the hilltop point (cf., Section 2.2.2).
On the other hand, the imperfection pattern d ¼ d2, which is a pure harmonic mode, is chosen to be the

eigenvector of the Jacobian matrix J that becomes critical at the hilltop bifurcation point for Case B. We
have A001 ¼ 0 for Case A and A0001 6¼ 0 and B0001 ¼ 0 for Case B.
For both cases, there is no distinct difference between post-peak behavior such as unloaded zone and

plastic strain intensification in perfect and imperfect steel members (see Fig. 5) for perfect member be-
havior. Recall that we focus only on peak load when the imperfection is sufficiently small.

3.4. Imperfection sensitivity

As seen in Section 2.2, the limit point and the hilltop point follow different imperfection sensitivity laws:
Eqs. (13) and (14) for the limit point and Eqs. (20) and (21) for the hilltop point. Fig. 7 shows load-dis-
placement curves for Case B with a number of imperfection magnitudes �. As shown there, the peak load
tends to decrease as j�j increases for both patterns d1 and d2. Such tendency, which is termed imperfection
sensitivity, is investigated here with reference to theoretical results in Section 2.2.

3.4.1. Limit point
Imperfection sensitivity for the critical load at a limit point (Case A) is investigated. For pattern

d ¼ d1 (A001 6¼ 0) shown in Fig. 8(a), critical load ~ffc and imperfection magnitude � display a linear rela-
tionship in agreement with the theoretical law given in (13). Fig. 8(b) shows imperfection sensitivity
for d ¼ d2 (A001 ¼ 0), for which critical load ~ffc is proportional to sign ð�Þ�2, as cited at the end of Section
2.2.1.

3.4.2. Hilltop bifurcation point
Imperfection sensitivity for the hilltop bifurcation point (Case B) is investigated. For d ¼ d1 (A0001 6¼ 0

and B0001 6¼ 0), as shown in Fig. 9(a), critical load ~ffc and imperfection magnitude � display a piecewise linear
relationship with a kink at � ¼ 0; the relationship for � > 0 and that for � < 0 have different slopes in
agreement with law (20). In addition, the relationship between critical displacement wc and imperfection
magnitude � shown in Fig. 10(a) correlates well with the one-half power law for critical displacement
presented in Eq. (21).
For d ¼ d2 (A0001 6¼ 0 and B0001 ¼ 0), as shown in Fig. 9(b), critical load ~ffc and imperfection magnitude

� display a piecewise linear relationship with a kink at � ¼ 0 that is reflection symmetric in ~ffc-axis, in
agreement with law (20) with B0001 ¼ 0. The relationship between critical displacement wc and imperfection
magnitude � in Fig. 10(b) follows the one-half power law (21).

4. Probabilistic variation of critical loads

In this section, we review a theoretical procedure to describe probabilistic variation of critical loads
(cf., Ikeda and Murota, 1990, 1993; Ikeda et al., in press) and presents its application to steel members.
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4.1. Theory

Probabilistic variation of critical loads due to probabilistic scatter of initial imperfections is described
theoretically. We assume that initial imperfection d in Eq. (3) is subject to multi-variate normal distribution
Nð0;W Þ with mean 0 and variance–covariance matrix W. In turn, �d is subject to Nð0; �2W Þ. Here, W is
chosen to be positive definite. Note that once imperfection sensitivity laws are obtained (cf. Section 2.2), the
probability density function of critical loads can be derived in a straightforward manner, especially for a
limit point.
On the right hand side of expression (13) of ~ffc for the limit point and expression (20) for the hilltop point,

only coefficients A001, A0001, and B0001 are functions in the initial imperfection pattern vector d, as we have
seen in Eqs. (9) and (17). Hence probabilistic variations of A001, A0001, and B0001 are the central issue in the
derivation below.

Fig. 7. Load–displacement curves for the hilltop bifurcation point (Case B) computed for a number of imperfection magnitudes.
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4.1.1. Limit point
For a limit point, we define

ða1; . . . ; apÞ ¼ gT1B
0
c : ð25Þ

Then Eq. (9) reduces to

A001 ¼
Xp

i¼1
aidi: ð26Þ

Since d � Nð0;W Þ, variable A001 is subject to normal distribution Nð0; r21Þ with mean 0 and variance

r21 ¼ gT1B
0
cWB0

T

c g1: ð27Þ

Hence incremental critical load ~ffc in Eq. (13) is subject to normal distribution Nð0;C2r21�2Þ with C ¼
�1=A010 > 0.

Fig. 8. ~ffc versus � relationships for the limit point (Case A).
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4.1.2. Hilltop bifurcation point
We consider a hilltop bifurcation point. Let

ða1; . . . ; apÞ ¼ gT1B
0
c ; ðb1; . . . ; bpÞ ¼ gT2B

0
c : ð28Þ

Then Eq. (17) reduces to

A0001 ¼
Xp

i¼1
aidi; B0001 ¼

Xp

i¼1
bidi: ð29Þ

Since d � Nð0;W Þ, variables A0001 and B0001 respectively are subject to normal distributions Nð0; r21Þ and
Nð0; r22Þ with mean 0 and variances

r2i ¼ gTi B
0
cWB0

T

c gi; i ¼ 1; 2: ð30Þ

Fig. 9. ~ffc versus � relationships for the hilltop bifurcation point (Case B).

S. Okazawa et al. / International Journal of Solids and Structures 39 (2002) 1651–1671 1663



See Ikeda et al. (in press) for statistical independency of A0001 and B0001. Then the probability density
function of ~ffc in Eq. (20) is evaluated as

/ð ~ffcÞ ¼
2ffiffiffiffiffiffi
2p

p
r̂r
exp

 
�

~ff 2c
2r̂r2

!
UN

	
� r

r̂r
~ff


; ð31Þ

where

r̂r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðC21r21 þ C22r

2
2Þ�2

q
; r ¼ C1r1

C2r2
; ð32Þ

Fig. 10. wc versus � relationships for the hilltop bifurcation point (Case B; w0c ¼ 6:5295 cm).
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and

UNðfÞ ¼
Z f

�1

1ffiffiffiffiffiffi
2p

p exp
�f2

2

	 

df

is the cumulative distribution function of the standard normal distribution N (0,1).
Note that the probability density function /ð ~ffcÞ in Eq. (31) has the two parameters r̂r and r. Parameter r̂r

characterizes variation of ~ffc, (r̂r
2 is equal to the average of ~ff 2c , to be precise), whereas r characterizes its

shape. For an extreme case of r ! 0 ðC1r1 ! 0Þ, in which only coefficient B0001 for the limit point is subject
to probabilistic variation, /ð ~ffcÞ reduces to a normal distribution of Nð0;C22r22�2Þ. For another extreme case
of r ! þ1 ðC2r2 ! 0Þ, in which only coefficient A0001 for the pitchfork bifurcation point is subject to
probabilistic variation, /ð ~ffcÞ reduces to

2Nð0;C21r21�2Þ for ~ffc < 0;
0 for ~ffc > 0:

�
Curves of probability density function /ð ~ffcÞ in Eq. (31) for several values of r are shown in Fig. 11.

Remark 1. We consider a case where d is kept fixed and � is subject to normal distribution Nð0; r2Þ. Then,
for a limit point, we have

~ffc � Nð0;C2A2001r2Þ:

For a hilltop point, the probability density function of ~ffc is dependent on cases. For C1jA0001j < C2jB0001j,
~ffc is subject to

Nð0; ðC1jA0001j þ C2jB0001jÞ2r2Þ for ~ffc < 0;
Nð0; ðC1jA0001j � C2jB0001jÞ2r2Þ for ~ffc > 0;

�
ð33Þ

and for C1jA0001j > C2jB0001j, ~ffc is subject to

Nð0; ðC1jA0001j þ C2jB0001jÞ2r2Þ þ Nð0; ðC1jA0001j � C2jB0001jÞ2r2Þ for ~ffc < 0;
0 for ~ffc > 0:

�
ð34Þ

Of course, the simple case treated here is not as realistic as the standard case d is subject to random
variations; see examples in Section 4.2.2.

Fig. 11. Curves of the probability density function of ~ffc for several values of r ¼ C1r1=C2r2 ðr1 ¼ r2 ¼ 1Þ.
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4.2. Numerical analyses of steel members

We carry out Monte-Carlo simulations on imperfect steel members of Cases A and B in Fig. 3 to arrive
at the data bank of their strengths. We consider the following two types of random imperfections:

• d is fixed and � is subject to a normal distribution Nð0; r2Þ, and
• � is fixed and d is subject to a multi-variate normal distribution Nð0;W Þ.

The former corresponds to the simple case in Remark 1 in Section 4.1.2 and the latter to the standard case.

4.2.1. Imperfection magnitude is subject to variation
We employ a fixed pattern d ¼ d1, but choose an ensemble of 1000 normally distributed random im-

perfection magnitudes � subject to Nð0; 0:10132Þ. Note that this corresponds to the case of Remark 1.
First, for Case A associated with the limit point, we have computed maximum loads for the 1000 im-

perfection magnitudes �d1. Histograms obtained in this manner and curves of the theoretical probability
density function (normal distribution) are compared in Fig. 12 for sample sizes of 100 and 1000. Com-
patibility between the histograms and the theoretical curves is improved with increased sample size. The
theoretical curve for sample size of 1000 has passed the v2 test at a significance level of 0.05 or less.
Next, we consider Case B associated with the hilltop point. As shown in Fig. 13, curves of the theoretical

probability density function (33) agree fairly well with histograms. The theoretical curve for sample size of
1000 has passed the v2 test at a significance level of 0.025 or less.

Fig. 13. Comparison of histograms and theoretical probability density functions for the hilltop point (Case B).

Fig. 12. Comparison of histograms and theoretical probability density functions for the limit point (Case A).
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4.2.2. Imperfection pattern is subject to variation
We define the imperfection parameter vector as

v ¼ �dada þ �dbdb þ �dcdc þ �dddd; ð35Þ

where da, db, dc and dd are harmonic modes shown in Fig. 14. For this case, we set v0 ¼ 0 and choose da,
db, dc, and dd to be basis vectors for v; consequently, we have

d ¼ ðda; db; dc; ddÞT:

We choose an ensemble of 100 imperfection patterns �d that is subject to a multivariate normal dis-
tribution. That is,

�d � Nð0;W Þ

with

W ¼
0:012

0:12

0:012

0:012

0BB@
1CCA:

Note that the imperfection defined by Eq. (35) is more realistic than the one used in Section 4.2.1.
For both Cases A (limit) and B (hilltop), we have computed maximum loads for 100 imperfection

patterns presented above. Fig. 15 shows histograms obtained in this manner and curves for the theoretical
probability density function, which is a normal distribution for Case A, and (31) for Case B, respectively.
The theoretical curves have passed the v2 test at a significance level of 0.05 or less. In particular, for Case B
associated with the hilltop point, the Weibull-like histogram is represented well by the theoretical curve. It
may be premature, however, to draw a definite conclusion based on the limited number of samples, 100.

Fig. 14. Imperfection patterns imposed on members.
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5. Concluding remarks

In this paper, we assessed applicability of elastic stability theory to description of tensile strength
variation of steel members. Empirical imperfection sensitivities of these members obtained by numerical
simulations agree well with the theoretical imperfection sensitivity laws. The theoretical formulas for the
probability of critical loads are shown to be useful to describe tensile strength of steel members.
There is criticism hinging upon the possibility of unloading from a plastic state, which in mathematics

means lack of differentiability of the governing equation (1) that is assumed in the derivation of a series
of formulas. Nonetheless, as seen in our numerical study, such a lack does not significantly influence im-
perfection sensitivities of steel members. Its applicability to particular elastic-plastic problems needs to be
assessed case by case, while this paper serves as its first step.
The limit point and hilltop bifurcation point have thoroughly different imperfection sensitivity laws and

probabilistic variations of strengths. It is, therefore, vital in successful description of strengths of steel
members to identify the type of critical point that governs the critical load.

Appendix A. Theoretical and computational details

Theoretical and computational details are worked out in this appendix. The Liapunov–Schmidt re-
duction is introduced in Section A.1. and the formulation of finite strain elastoplasticity is presented in
Section A.2.

A.1. Liapunov–Schmidt reduction

The Liapunov–Schmidt reduction is conducted on the system (1) of equations. We consider a critical
point ðu0c ; f 0c Þ of multiplicity M for the perfect system (with v ¼ v0). Then we obtain

dim ker ðJ 0c Þ ¼ M ; dim range ðJ 0c Þ ¼ N �M

for J 0c ¼ Jðu0c ; f 0c ; v0Þ. Here dim denotes the dimension of the space associated, ker indicates the kernel
space, range denotes the range space, and we have M 6N because multiplicityM cannot exceed degrees of
freedom N of the original system of equations.
Consider a direct sum decomposition

RN ¼ ker ðJ 0c Þ � U ðA:1Þ

Fig. 15. Comparison of histograms and theoretical probability density functions.
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of the N-dimensional space RN of real numbers to which u belongs (� indicates the direct sum of spaces),
and another direct sum decomposition

RN ¼ V � range ðJ 0c Þ ðA:2Þ

of the space in which F takes values. Note that dim U ¼ N �M and dim V ¼ M . According to Eq. (A.1),
we decompose u� u0c in Eq. (5) into two components as

u ¼ u0c þ
XM
j¼1

wjgj þ w ðA:3Þ

with XM
j¼1

wjgj 2 ker ðJ 0c Þ; w ¼
XN

j¼Mþ1
wjgj 2 U ;

where 2 indicates that the vector on the left belongs to the space on the right.
Then, the full system (1) of equations is decomposed into two parts:

gTi F u0c

 
þ
XM
j¼1

wjgj þ w; f 0c þ ~ff ; v

!
¼ 0; i ¼ 1; . . . ;M ; ðA:4Þ

gTi F u0c

 
þ
XM
j¼1

wjgj þ w; f 0c þ ~ff ; v

!
¼ 0; i ¼ M þ 1; . . . ;N : ðA:5Þ

Note that the system of Eqs. (A.4) and (A.5) has been diagonalized by pre-multiplying gTi and using the
transformation equation (A.3). By the implicit function theorem, Eq. (A.5) can be solved for w as

w ¼ uðw; ~ff ; vÞ ðA:6Þ

uniquely in the neighborhood of ðw;w; ~ff ; vÞ ¼ ð0; 0; 0; v0Þ, where w ¼ ðw1; . . . ;wMÞT. Substitution of this
into Eq. (A.4) yields the reduced system of bifurcation equationseFF ðw; ~ff ; vÞ ¼ 0 ðA:7Þ

with eFFiðw; ~ff ; vÞ ¼ gTi Fðu0c þ wþ uðw; ~ff ; vÞ; f 0c þ ~ff ; vÞ; i ¼ 1; . . . ;M : ðA:8Þ

Putting v ¼ v0 þ �d (cf., Eq. (3)), we use a short-hand notationbFF ðw; ~ff ; �Þ ¼ eFF ðw; ~ff ; v0 þ �dÞ ðA:9Þ

and an alternative form,bFF ðw; ~ff ; �Þ ¼ 0; ðA:10Þ

of the system of bifurcation equations (A.7).

A.2. Formulation of finite–strain elastoplasticity

Here, we describe the boundary value problem for the classical rate-independent plasticity model. By
using the updated-Langrangian formulation, we provide the rate form of the momentum balance equation
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in context of finite element (FE) analyses. Elaborate discussions of this type of formulation are found in
Bathe (1996) and Simo and Hughes (1998).
Let B � Rndimðndim ¼ 1; 2 or 3Þ be the reference configuration of an elastic-plastic solid with material

particles denoted by X 2 B and subject to deformation u : B 7!Rndim , with J :¼ detrXu > 0. We let oB be
the boundary of B and assume that the deformation is prescribed on ouB � oB as u ¼ ûu, whereas nominal
traction vector T̂T is prescribed on otB � oB, with nominal stress tensor P and unit normal N , as PN ¼ T̂T.
We consider the quasi-static equilibrium problem with the given body force B in B.
In the current configuration uðBÞ, Kirchhoff stress tensor s and velocity field v :¼ _uu � u�1 are used to

describe the equilibrium state. In terms of admissible spatial velocity field g in an appropriate function
space V, the rate form of the linear variational equation of this problem is given byZ

uðBÞ
rg : ðrvs þLvsÞ

dv
J

¼
Z

uðBÞ
_bb � g dv

J
þ
Z
otuðBÞ

_̂tt̂tt � gds; g 2 V; ðA:11Þ

where _bb and _̂tt̂tt ¼ rn are spatial representations of B and T̂T, respectively, with the Cauchy stress r and unit
normal n on otu. Here, Lvs is the Lie derivative of s and related to its Jaumann rate s

$
as

Lvs ¼ s
$ � ds � sd :¼ a : d; ðA:12Þ

where d is the spatial rate-deformation tensor and a are the symmetric moduli.
In the formulation and numerical analyses, we simply assume that the material reveals isotropy and that

elastic strains are small compared with plastic ones. Also, by assuming that the plastic deformation is
incompressible, we neglect volumetric change of this metal by J � 1 so that the classical J2 flow theory in
plasticity can be extended to a finite strain range. These assumptions are valid for the metal specimens
under consideration whose constitutive equation is given in terms of the rate form

s
$ ¼ c : d; ðA:13Þ

in which the symmetric moduli c take the same constant values ce as those in linear elasticity for elastic
deformation and, for plastic flow,

c ¼ ce � 9l2

3l þ H 0
1

�rr2

	 

r0� � r0�: ðA:14Þ

Here, l is the shear modulus, H 0 is the plastic modulus that is obtained as the derivative of Eq. (24), �rr is the
equivalent stress and r0 is the deviatoric stress tensor.
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