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Abstract

Elastic stability theory is applied to description of tensile strength variation in steel members due to variation of
initial imperfections, despite criticism on the occurrence of unloading due to plastic instability. In numerical simulation
of such members, the maximum load is attained at a limit point or a hilltop bifurcation point. This load is not much
different for either type of point; hence, little attention has been paid to the type of points up to now. Yet it is note-
worthy that these two types of points follow different imperfection sensitivity laws within the framework of elastic
stability theory. Numerical experiments on steel members undergoing plastic deformation are conducted to ensure that
empirical imperfection sensitivities for these members agree well with those sensitivity laws. This assesses applicability
of elastic stability theory to description of plastic instability behaviors of steel members. Moreover, empirical histo-
grams of steel members obtained through Monte-Carlo simulations are compared with theoretical probabilities of
maximum loads, which are a normal distribution for the limit point and a Weibull-like one for the hilltop point.
Therefore, elastic stability theory is useful to describe tensile strength variation of steel members. © 2002 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

A considerable number of studies have been made on limit behavior of a tensile steel specimen under-
going plastic instability (see Tomita, 1994; Petryk, 1997; Tvergaard, 1999 for comprehensive reviews). In
numerical simulation of this behavior, it is observed that a bifurcation point exists just after a limit point on
a load—displacement curve. For a longer member, the limit point and the bifurcation point tend to coincide
(Needleman, 1972; Hutchinson and Miles, 1974; Hill and Hutchinson, 1975; Burke and Nix, 1979). As
called hilltop bifurcation point approximated such a pair of critical points. This hilltop point was inves-
tigated using elastic stability theory in pioneering work by Thompson and Schorrock (1975).
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It is noteworthy that the maximum load is subject to probabilistic variation due to probabilistic scatter
of initial imperfections. A hint for describing this variation is found in probabilistic studies of the buckling
of structures (see e.g., Bolotin, 1984; Augusti et al., 1984; Lindberg and Florence, 1987; Ben-Haim and
Elishakoff, 1990; Elishakoff et al., 1994 for textbooks).

The first-order second-moment method was employed to replace the Monte-Carlo method for normally
distributed initial imperfections (e.g., Karadeniz et al., 1982; Elishakoff et al., 1987; Arbocz and Hol, 1991).
Roorda and Hansen (1972) applied an imperfection sensitivity law to a single mode normally distributed
initial imperfection. A procedure to obtain the probability density function of critical loads for a system
with various initial imperfections with known probabilistic characteristics was proposed in Murota and
Ikeda (1992) and Ikeda and Murota (1993), and has recently been extended to the hilltop bifurcation in
Ikeda et al. (in press).

In this paper, we search for applicability of elastic stability theory for description of imperfection sen-
sitivity and probabilistic variation of tensile strengths of steel members. Application of elastic stability
theory to a completely different problem, plastic instability behavior, may invite criticism on the possibility
of unloading, which in mathematics means lack of differentiability of the governing equation. Nonetheless,
our numerical study demonstrates that such a lack does not significantly influence imperfection sensitivities
of steel members.

In Section 2, we review the imperfection sensitivity laws (see Ikeda et al., in press). In Section 3, a series
of numerical analyses is conducted to investigate perfect and imperfect behaviors of steel members (spec-
imens) undergoing plastic deformation and, in turn, to discover their empirical imperfection sensitivities.
First, we investigate the size effect for perfect members with a few different aspect ratios; maximum load for
the aspect ratio of 2 is governed by a limit point and maximum load for 10 is approximated by a hilltop
bifurcation point. Next, empirical imperfection sensitivities of these members for several given patterns of
imperfection are found to follow feasibly the theoretical sensitivity laws presented in Section 2; this assesses
the applicability of elastic stability theory. In Section 4, when initial imperfections are subject to a multi-
variate normal distribution, it has been derived theoretically that maximum load probabilistic variation
follows a normal distribution for the limit point and a Weibull-like one for the hilltop bifurcation point.
These theoretical distributions are compared with the histograms of the maximum loads of steel members
computed for normally distributed initial imperfections. Thus probabilistic variation of strength, which is
dependent on the types of critical points, can be described by elastic stability theory in a systematic manner.

2. Theory

In this section, we review elastic bifurcation theory on a limit point and a hilltop bifurcation point
with an emphasis on imperfection sensitivity laws (cf., Thompson and Hunt, 1973, 1984; Thompson and
Schorrock, 1975; Tkeda et al., in press).

2.1. General framework

General framework of the theory employed in this paper is presented as a summary of Ikeda and Murota
(1990, in press).
We consider a system of nonlinear equilibrium or governing equations

F(u,f,v) =0, (1)

where u indicates the N-dimensional unknown vector, f denotes the loading parameter, and v indicates the
p-dimensional imperfection parameter vector. We assume F is sufficiently smooth and Jacobian (tangent
stiffness) matrix J = OF /Ou is symmetric.
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We have
det J.=0 (2)

at a critical point (uc, f.), where the subscript (-), denotes that the variable in the parentheses is associated
with the critical point. Let {5,|i = 1,..., M} be a family of independent eigenvectors of J, such that J.y;, = 0
(i=1,...,M), where M is the multiplicity of the critical point (u, f;), which is called simple if M = 1 and
double if M = 2.

In our formulation, the imperfection parameter vector v is expressed as

v=2"4ed, (3)

where v’ is the nominal (standard) value of v (the superscript ()0 denotes a variable associated with the
perfect system), d is called the “imperfection pattern vector,” and e denotes the magnitude of initial im-
perfection (e can be negative). Eq. (3) is useful in describing deviation from nominal (standard) values of
various kinds of parameters, such as cross section, member length, node location, and so on. Furthermore,
use of d is vital in description of probabilistic variation of critical loads in Section 4.

We further consider a critical point («2, /) for the perfect system with v = »°, where ()? denotes the
variable associated with a critical point for the perfect system. An N X p constant matrix, called the im-
perfection sensitivity matrix,

oF

Bl =_—
RNG) Y
evaluated at this point plays a crucial role in describing influence of imperfections.

In the neighborhood of the critical point (u?, f0) for the perfect system, we express the nodal dis-
placement u as

(W, £0°), )

sJeo

N
u=u+ ijnj (5)
=1
in terms of incremental variables (w;|j =1,...,N), and the bifurcation parameter f as
f=rR+7
where f represents the increment of f from the critical point for the perfect system. We denote by
w= (wi,...,wy)" avector associated with the kernel space of JO( (-)" denotes the transpose of a matrix or
vector).
By means of the Liapunov—Schmidt reduction, the system of Eq. (1) is simplified to the reduced system
of bifurcation equations for w = (wy,...,wy)" (cf., Section A.1 in Appendix A)
Fw,.f.e)=0. (6)

The criticality condition det J(u., f.,v) = 0 in Eq. (2) is equivalent to
det T (w,f,€) =0, (7)
where J (w, 7, €) = oF Jow(w, 7, €) is the Jacobian matrix of the reduced system of bifurcation equations.
2.2. Imperfection sensitivity laws
For a limit point and a hilltop bifurcation point, we derive imperfection sensitivity laws by determining

the location (we, £.) = (we(€), f.(€)) of the critical point of an imperfect system with € # 0 as a simultaneous
solution of Egs. (6) and (7).
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2.2.1. Limit point
For a limit point, the bifurcation equation (6) becomes (cf., Ikeda and Murota, in press)

ﬁ(Wl,f, 6) = AZOOW% +A010f+A001€ +A101W16 +A110W1f+ hOt = 07 (8)
where h.o.t. denotes higher-order terms, and coefficients 4;; are defined by

1 oititk 1?

= 9" 0,0,0), ijk=0,1,...
I owiofioer 00 b

ijk
In particular, coefficient 4¢;, which plays a key role in the present formulation, is expressed as
Aot = mTBSd- (9)

It is assumed that 4oy # 0 for some d, i.e., ] BY # 0T. In addition, we have
1{oR) oF )
Ao =7 == |, Ao = | —=
2 ( ow? . of ).

N
F=F(wy,...,wy.foe) =] F@l +> wm;, f0+ fivo+ed), i=1,...N. (10)
J=1

with

The criticality condition (7) for the bifurcation equation (8) is evaluated as

oF . "
W(th, 6) = 2A200W] +A101€ +A110f + hOt =0. (11)
1
We hereafter consider a case of practical importance where the system in question becomes unstable at
a maximum point of f, for which

A200 < 0, A010 < 0. (12)

By solving simultaneously Egs. (8) and (11), we can obtain the imperfection sensitivity law for the critical
load

Je ~ CApor€ (13)

(where C = —1/4¢10 > 0 by Eq. (13)) and the imperfection sensitivity law for the critical displacement

1

Wie ~ — 5———
245004010

(A1014010 — Aoor4110)€. (14)
Eq. (13) indicates that, when Agy # 0, the critical load f; increases or decreases with the order of e. For a
particular imperfection pattern d satisfying 4oy = ] Bl = 0, as in Section 3.4.1, f; increases or decreases
with a higher order, say €.

2.2.2. Hilltop bifurcation point
Imperfection sensitivity laws of a hilltop bifurcation point are presented here as a summary of ITkeda
et al. (in press). We consider a hilltop bifurcation point, which is defined as a double critical point (M = 2)
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occurring as a coincidence of a limit point and a pitchfork bifurcation point. In addition, the pitchfork
bifurcation point is assumed to have a trivial solution.
The system of bifurcation Eq. (6) for the hilltop bifurcation point for a potential system becomes

ﬁl (Wl s Wz,f, 6) = A3000W% + 2B2()()()W1W2 +A1010W1f + A0001€ + h.ot. = O, (15)
ﬁZ(WhWvaa €) = Baoow + Boaoows + Booiof + Booor€ + h.o.t. =0, (16)

where Eq. (15) is associated with the hilltop point and Eq. (16) with the limit point. One can see the
presence of a trivial solution w; = 0 in Eq. (15) for the perfect system with ¢ = 0. Note that 4199 = 2B39p0 In
Eq. (15). In Egs. (15) and (16), although infinitely many order terms are to be included in principle, we
express explicitly only the leading terms, which govern asymptotic behavior near the hilltop point (for
example, w} is the leading term of wif, wie, w3, etc.). Coefficients in Eqs. (15) and (16) are given by

NG
108 K1 0*F,
s = | 21 -3
W0 6 owd ;22,. owdw; ’
N
A OF;
1100 Swiow,s
PR L 10F oK
A0 = - — ==
ow,0f = A of 0w 0w;
N N0
g L(FBY o 1(vR
2000 =5 o ) 0200 =5 o )
R\’
Booio = <6—;> . Aoor =B, Booos =1, B, (17)

where ()2 denotes the evaluation at the hilltop point at (wy, w,, f,€) = (0,0,0,0) and F; (i = 1,2) are de-
fined by Eq. (10).

We assume that Ao # 0 and By # 0 for some d, i.e., §7B #0" (i =1,2). The coefficient Ay =
nTB%d for imperfection magnitude € in the bifurcation equation (15) of the pitchfork bifurcation point
denotes the component of d projected on Bngl. The vector BSTnl, in this sense, represents an imperfection
pattern associated with the pitchfork bifurcation point. The vector BgTrb, which contributes to Eq. (16) via
Booor = n}Bgd, denotes an imperfection pattern for the limit point.

The Jacobian matrix becomes

5 ; 343000W? + 2Bagoows + Arorof  2Baooowi
J = 1 h.o.t. 18
(Wl ) W2af) 6) ( 2B2000W1 2B0200W2 +h.o ( )

Note that some leading terms that do not influence resulting formulas have been contained in h.o.t. in
Eq. (18).

! Fora pitchfork bifurcation point, the bifurcation equation in general takes the form of ﬁ(wl ,f, €) = A3()0W% + A110w1f+ A020f2 +
Agor€ + h.o.t. = 0, which has a trivial solution w = 0 when Ay = 0.
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We choose w, such that

wy < 0: loading from the hilltop point,
wy > 0:  unloading from the hilltop point.

We consider the most customary case in practice where the system in question has a rising main path and
becomes unstable at a hilltop bifurcation point with a declining bifurcation path. Then, we have

Booio <0,  Bygo <0, B < 0. (19)

We focus on the limit point on an imperfect path that is close to the rising main path. For this point, we
have an imperfection sensitivity law 2 for the critical load

fo ~ —Cil4uore] + C2Bonor e, (20)
and imperfection sensitivity laws for critical displacements
wie ~ C3 |A00016|1/2, Woe ~ —C4|A00016|1/27 (21)

where C; (i =1,...,4) are constants defined by

. /2
sign(Baooo) <Bozoo )l 1
C, = > 0, C=— > 0, 22
: Boo1o B3000 ? Booto (22)
C3 = —sign(A00016)< 30200 )1/4 C4 = ; >0 (23)
483000 ’ (4B3000Bo200) 1

Here sign (-) denotes the sign of the variable therein.

3. Elastic—plastic bifurcation analyses

We investigate applicability of the imperfection sensitivity laws presented in Section 2 to bifurcation
behavior of steel members subjected to uniform tension. Numerical analyses are conducted on a rectangular
domain illustrated in Fig. 1. By imposing several geometrical initial imperfections, we evaluate empirically
imperfection sensitivities of this domain and describe them with use of imperfection sensitivity laws pre-
sented in Section 2. Note that imperfection patterns employed here are more pedagogic than practical.

3.1. Conditions for analyses

Standard finite element formulation is employed for finite-strain elastic—plastic analyses. We analyze
only a fourth of the rectangular domain as shown in Fig. 1 by imposing symmetry conditions. The rect-
angular domain is assumed to be under a plane strain condition and isotropic response described by the
classical J,-flow theory with isotropic strain hardening. We employ the hypoelastic constitutive Vlaw, which
relates the Jaumann rate of Kirchhoff stress, 7, to the spatial rate-deformation tensor D by 7 = ¢? : D.
Here, the symmetric, elastic—plastic moduli ¢P are given by Eq. (A.14) in Section A.2 in Appendix A, in
which formulation details are resolved. The selective reduced integration scheme is employed to prevent
incompressibility locking for plastic deformation.

2 The imperfection sensitivity laws originally obtained by Thompson and Schorrock (1975) correspond to the case of By = 0.
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Traction free
q"; —_—
I ) =
S = T & B —f
| L |

Fig. 1. Rectangular domain for numerical analyses.

Material properties used in the analyses are chosen as follows: Young’s modulus £ = 200 GPa and
Poisson’s ratio v = 0.333 for elasticity. For plastic hardening, a power law

) 00625
60Y<1+e> > 0, (24)

ey

is utilized, where the effective plastic strain eP is assumed to be an independent variable. We choose
ey = oy/E = 1/500 and the initial yield stress gy = 400 MPa.

3.2. Characterization of strength

We performed plastic bifurcation analyses of the rectangular domain for a few aspect ratios of L/W =
2-10 to obtain load-displacement curves shown in Fig. 2. Fig. 3 shows finite element models (L/W = 2 and
10), which have a sufficient number of quadrilateral elements with standard bi-linear shape functions. Limit
point locations are identical for all aspect ratios and are denoted in this figure by a solid circle. As shown,
the first bifurcation points, denoted by open circles, approach the limit point as the specimen becomes

1.5 | 1 1 I I | 1 1 ] I | I I 1 1

P
Ao,
|

Normalized load,
=)
W
I ]
//‘ ' v
ST
==
nn
5 o0
|

B @ Limit point 1

O Bifurcation point

0 [N NN TN S NN TN SR SN RN SN S SR S

0 0.1 0.2 0.3

Normalized displacement, u/L

Fig. 2. Normalized load—displacement curves with L/W =2, 4, 6, 8, 10 (P: applied load; 4(= W): initial cross section; gy: yields stress;
u: axial displacement; L: member length).
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| L=200 |

(cm)
Case B

Fig. 3. FE meshes.

slender (see e.g., Needleman, 1972 and Burke and Nix, 1979). The critical load at the pitchfork bifurcation
point for the aspect ratio of L/W = 10 is 0.2% smaller than the maximum load at the limit point. Hence, the
force-displacement curve for L/W = 10 is used to approximate the hilltop bifurcation point.

We consider the following two cases: Case A with the aspect ratio of L/W = 2 for a limit point, and Case
B with L/W = 10 that approximates a hilltop bifurcation point. For both cases, the critical load is f° =
1086 kN.

Figs. 4 and 5 show deformation progress in those perfect members (Cases A and B) after bifurcation. So-
called diffuse necking is observed along with non-uniform plastic strain distribution at the center of each
member. As load increases, the plastic strain tends to intensify at the center, and unloaded parts spread
from each edge to the center. These are typical deformation characteristics for steel members under the
plane strain condition (see e.g., Burke and Nix, 1979; Tvergaard et al., 1981).

Since strain softening is excluded in material characterization for plasticity and a sufficiently large
number of finite elements is employed, the mesh dependency problem can be avoided to some extent (cf.,

0.70

(a) u/L=0,NL=0 (b) u/L=0.2, NL=0.64

Equivalent Plastic Strain

(c) u/L=0.25 NL=0.6 (d)u/L=0.3,NL=0.56

Fig. 4. Progress of deformation in steel members for the limit point (Case A) (u: axial displacement; L: member length; NL:P/(4ay);
P: applied load; A(= W): initial cross section; oy: yields stress).
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=
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(b) u/L=0.1, NL=0.60 0.07

(c)u/L=0.12, NL=0.47

=

(d) u/L=0.16, NL=0.25

Fig. 5. Progress of deformation in steel members for the hilltop point (Case B) (u: axial displacement; L: member length; NL:P/(4ay);
P: applied load; 4(= W): initial cross section; gy: yields stress).

Tvergaard (1999) for an account of mesh dependency). However, actual metal reveals softening behavior in
elastic-plastic material characteristics; therefore, appropriate constitutive models may be involved for more
realistic simulation of post-peak (bifurcation) behavior. Nonetheless, these issues will not alter peak be-
havior, which is the main concern of this paper.

3.3. Imperfect behaviors

Imperfect behaviors for Cases A and B are investigated by employing two constant imperfection patterns
d =d, and d, shown in Fig. 6 with a few imperfection magnitudes +e¢ = 0.0-0.1. Note that initial

1.0cm

Imperfection pattern d, Imperfection pattern d,

Fig. 6. Imperfection patterns imposed on members (¢ = 0.0 ~ 0.1).
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imperfection patterns employed have fourfold symmetry. Use of such symmetry is based on the experi-
mental observation that necking with fourfold symmetry is the most dominant bifurcation mode in tension
tests of steel members.

The pattern d = d; has both volumetric and harmonic modes. Therefore, it is influential on Ay, Aooor
and Byg; in Egs. (9) and (17). 4gg; # 0 holds for Case A associated with the limit point (cf., Section 2.2.1),
and Aoy # 0 and Bgg; # 0 for Case B associated with the hilltop point (cf., Section 2.2.2).

On the other hand, the imperfection pattern d = d,, which is a pure harmonic mode, is chosen to be the
eigenvector of the Jacobian matrix J that becomes critical at the hilltop bifurcation point for Case B. We
have 4y = 0 for Case A and Ay # 0 and By = 0 for Case B.

For both cases, there is no distinct difference between post-peak behavior such as unloaded zone and
plastic strain intensification in perfect and imperfect steel members (see Fig. 5) for perfect member be-
havior. Recall that we focus only on peak load when the imperfection is sufficiently small.

3.4. Imperfection sensitivity

As seen in Section 2.2, the limit point and the hilltop point follow different imperfection sensitivity laws:
Egs. (13) and (14) for the limit point and Egs. (20) and (21) for the hilltop point. Fig. 7 shows load-dis-
placement curves for Case B with a number of imperfection magnitudes e. As shown there, the peak load
tends to decrease as |¢| increases for both patterns d; and d,. Such tendency, which is termed imperfection
sensitivity, is investigated here with reference to theoretical results in Section 2.2.

3.4.1. Limit point

Imperfection sensitivity for the critical load at a limit point (Case A) is investigated. For pattern
d =d, (Agy; # 0) shown in Fig. 8(a), critical load fz and imperfection magnitude e display a linear rela-
tionship in agreement with the theoretical law given in (13). Fig. 8(b) shows imperfection sensitivity
for d = d, (Ay; = 0), for which critical load fc is proportional to sign (¢)e?, as cited at the end of Section
2.2.1.

3.4.2. Hilltop bifurcation point

Imperfection sensitivity for the hilltop bifurcation point (Case B) is investigated. For d = d; (4op01 # 0
and By # 0), as shown in Fig. 9(a), critical load fc and imperfection magnitude e display a piecewise linear
relationship with a kink at e = 0; the relationship for ¢ > 0 and that for ¢ < 0 have different slopes in
agreement with law (20). In addition, the relationship between critical displacement w, and imperfection
magnitude e shown in Fig. 10(a) correlates well with the one-half power law for critical displacement
presented in Eq. (21).

For d = d5 (Aoo1 # 0 and Bygy; = 0), as shown in Fig. 9(b), critical load fc and imperfection magnitude
e display a piecewise linear relationship with a kink at e = 0 that is reflection symmetric in fc-axis, in
agreement with law (20) with By = 0. The relationship between critical displacement w, and imperfection
magnitude e in Fig. 10(b) follows the one-half power law (21).

4. Probabilistic variation of critical loads

In this section, we review a theoretical procedure to describe probabilistic variation of critical loads
(cf., Ikeda and Murota, 1990, 1993; Ikeda et al., in press) and presents its application to steel members.
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Fig. 7. Load—displacement curves for the hilltop bifurcation point (Case B) computed for a number of\imperfection magnitudes.

4.1. Theory

Probabilistic variation of critical loads due to probabilistic scatter of initial imperfections\is described
theoretically. We assume that initial imperfection d in Eq. (3) is subject to multi-variate normal distribution
N(0, W) with mean 0 and variance-covariance matrix W. In turn, ed is subject to N(0,€eW). e, Wis
chosen to be positive definite. Note that once imperfection sensitivity laws are obtained (cf. Section
probability density function of critical loads can be derived in a straightforward manner, especially Xor a
limit point.

On the right hand side of expression (13) of £, for the limit point and expression (20) for the hilltop poin
only coefficients Ay, Agoo1, and By, are functions in the initial imperfection pattern vector d, as we have

seen in Egs. (9) and (17). Hence probabilistic variations of Ay, Aooo1, and Bygo; are the central issue in the
derivation below.
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(kN)

0.005

-0.005

(&N)
0.005 T T T T T ! T T T T T

—0.005 - -

sign(€ ) €?
(b) d=d, (Ay,,=0)

Fig. 8. f; versus e relationships for the limit point (Case A).
4.1.1. Limit point
For a limit point, we define
(ai,...,a,) = niBY. (25)
Then Eq. (9) reduces to

P
Aoor = Zaidi- (26)
=1
Since d ~ N(0, W), variable Aq is subject to normal distribution N (0, ¢?) with mean 0 and variance

ot = BOWBY n,. (27)

Hence incremental critical load £, in Eq. (13) is subject to normal distribution N (0, C?¢3€?) with C =
—I/A()lo > 0.
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-10

(b) d=d2 (Aoom #0 and B0001= O)

Fig. 9. f; versus ¢ relationships for the hilltop bifurcation point (Case B).

4.1.2. Hilltop bifurcation point
We consider a hilltop bifurcation point. Let

(al,...,ap) :l]TBS, (bl,...,bp) :ﬂ;rB(c)

Then Eq. (17) reduces to

p p
Aooor = Zaidi7 Booor = Zbidi-
i=1 i=1

1663

(28)

(29)

Since d ~ N (0, W), variables Ay and By respectively are subject to normal distributions N (0, ¢7) and

N(0,03) with mean 0 and variances

o= BB, =12

(30)
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(a) d=d, (Ao #0 and By, 0)
(cm)

We

sign(e) €7
(b) d=d, (Awn #0 and Byy,=0)

Fig. 10. w, versus ¢ relationships for the hilltop bifurcation point (Case B; w? = 6.5295 cm).

See Ikeda et al. (in press) for statistical independency of Ao and Boi. Then the probability density
function of £, in Eq. (20) is evaluated as

2 7 ,
- —Le oy —= 31
where
6= /(Ciat + Cod)e, r= 0 (32)

Czaz’
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o[ dgen ()

is the cumulative distribution function of the standard normal distribution N(0,1).

Note that the probability density function $(f.) in Eq. (31) has the two parameters ¢ and r. Parameter &
characterizes variation of f,, (6% is equal to the average of ff, to be precise), whereas r characterizes its
shape. For an extreme case of » — 0 (Cyo; — 0), in which only coefficient By, for the limit point is subject
to probabilistic variation, ¢(f,) reduces to a normal distribution of N (0, C362€?). For another extreme case
of r — 400 (Cy0, — 0), in which only coefficient 4o for the pitchfork bifurcation point is subject to
probabilistic variation, ¢(f,) reduces to

and

2N(0,C3g3€?) for f, <0,
0 for £, > 0.

Curves of probability density function ¢(£.) in Eq. (31) for several values of r are shown in Fig. 11.

Remark 1. We consider a case where d is kept fixed and e is subject to normal distribution N (0, ¢?). Then,
for a limit point, we have

fo~N(0,C242%,0%).

For a hilltop point, the probability density function of fc is dependent on cases. For Cy|4oo1]| < C2|Booot |,
/. is subject to

{N(07 (Cildooor| + C2|30001|)262) for ]fc <0, 3
N(0, (Ci|4oo01| — C2|Booni|)"6*)  for f, >0,

and for C, ‘A0001| > C2|B()001|, fz is subject to

N(0, (Cy[Aooot| + Ca|Booor |)*62) + N(0, (Ci|Aooor| — CalBooni|)°0?)  for Ji <0, (34)
0 for . > 0.

Of course, the simple case treated here is not as realistic as the standard case d is subject to random

variations; see examples in Section 4.2.2.

Probability density, ¢
r—+o 08

Fig. 11. Curves of the probability density function offC for several values of r = Cya,/Cy0; (0, =02 = 1).
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4.2. Numerical analyses of steel members

We carry out Monte-Carlo simulations on imperfect steel members of Cases A and B in Fig. 3 to arrive
at the data bank of their strengths. We consider the following two types of random imperfections:

e d is fixed and e is subject to a normal distribution N (0, ¢?), and
e ¢ is fixed and d is subject to a multi-variate normal distribution N(0, ).

The former corresponds to the simple case in Remark 1 in Section 4.1.2 and the latter to the standard case.

4.2.1. Imperfection magnitude is subject to variation

We employ a fixed pattern d = d,, but choose an ensemble of 1000 normally distributed random im-
perfection magnitudes e subject to N(0,0.1013?). Note that this corresponds to the case of Remark 1.

First, for Case A associated with the limit point, we have computed maximum loads for the 1000 im-
perfection magnitudes ed,. Histograms obtained in this manner and curves of the theoretical probability
density function (normal distribution) are compared in Fig. 12 for sample sizes of 100 and 1000. Com-
patibility between the histograms and the theoretical curves is improved with increased sample size. The
theoretical curve for sample size of 1000 has passed the y? test at a significance level of 0.05 or less.

Next, we consider Case B associated with the hilltop point. As shown in Fig. 13, curves of the theoretical
probability density function (33) agree fairly well with histograms. The theoretical curve for sample size of
1000 has passed the %> test at a significance level of 0.025 or less.

10 . 20 .
100 samples 1000 samples &\
6 _ZZ X 120
& z2
3} - jes i) e}
° 3 © =
z 0g g %0 £
= g = g
. €3 ¢
) = 2 40
032 0 02° 032 0 020
f f

Fig. 12. Comparison of histograms and theoretical probability density functions for the limit point (Case A).

T T
100 samples 1000 samples
20 400
20 40

2 2z
k7] ‘Z
£ S m
3 g3 3
z :z £
= g = g
3 E L0 200 2
10 20< 8 <
2 2
a &

Fig. 13. Comparison of histograms and theoretical probability density functions for the hilltop point (Case B).
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4.2.2. Imperfection pattern is subject to variation
We define the imperfection parameter vector as

y = Gdada + Gdbdb -+ Edcdc + Gdddd, (35)

where d,, dy, d. and dy are harmonic modes shown in Fig. 14. For this case, we set v = 0 and choose d,,
dy, d., and dy to be basis vectors for v; consequently, we have

d = (d‘d7 db7 d<:7 dd)T'

We choose an ensemble of 100 imperfection patterns ed that is subject to a multivariate normal dis-
tribution. That is,

ed ~N(0, W)
with

0.012
0.12
0.012
0.012

Note that the imperfection defined by Eq. (35) is more realistic than the one used in Section 4.2.1.

For both Cases A (limit) and B (hilltop), we have computed maximum loads for 100 imperfection
patterns presented above. Fig. 15 shows histograms obtained in this manner and curves for the theoretical
probability density function, which is a normal distribution for Case A, and (31) for Case B, respectively.
The theoretical curves have passed the 3> test at a significance level of 0.05 or less. In particular, for Case B
associated with the hilltop point, the Weibull-like histogram is represented well by the theoretical curve. It
may be premature, however, to draw a definite conclusion based on the limited number of samples, 100.

} 1.0cm
T o
S
[
I L |
Imperfection pattern da Imperfection pattern db
}1.0cm

— W —

f L |

Imperfection pattern de Imperfection pattern dua

Fig. 14. Imperfection patterns imposed on members.
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Fig. 15. Comparison of histograms and theoretical probability density functions.

5. Concluding remarks

In this paper, we assessed applicability of elastic stability theory to description of tensile strength
variation of steel members. Empirical imperfection sensitivities of these members obtained by numerical
simulations agree well with the theoretical imperfection sensitivity laws. The theoretical formulas for the
probability of critical loads are shown to be useful to describe tensile strength of steel members.

There is criticism hinging upon the possibility of unloading from a plastic state, which in mathematics
means lack of differentiability of the governing equation (1) that is assumed in the derivation of a series
of formulas. Nonetheless, as seen in our numerical study, such a lack does not significantly influence im-
perfection sensitivities of steel members. Its applicability to particular elastic-plastic problems needs to be
assessed case by case, while this paper serves as its first step.

The limit point and hilltop bifurcation point have thoroughly different imperfection sensitivity laws and
probabilistic variations of strengths. It is, therefore, vital in successful description of strengths of steel
members to identify the type of critical point that governs the critical load.

Appendix A. Theoretical and computational details

Theoretical and computational details are worked out in this appendix. The Liapunov-Schmidt re-
duction is introduced in Section A.l. and the formulation of finite strain elastoplasticity is presented in
Section A.2.

A.1. Liapunov—Schmidt reduction
The Liapunov—Schmidt reduction is conducted on the system (1) of equations. We consider a critical
point (a2, £) of multiplicity M for the perfect system (with v = »°). Then we obtain
dim ker (J°) = M, dim range (J') =N - M

for JO =J(u?, f2,v°). Here dim denotes the dimension of the space associated, ker indicates the kernel
space, range denotes the range space, and we have M < N because multiplicity M cannot exceed degrees of
freedom N of the original system of equations.

Consider a direct sum decomposition

RY =ker (J)) o U (A.1)
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of the N-dimensional space R" of real numbers to which u belongs (& indicates the direct sum of spaces),
and another direct sum decomposition

R" =V @ range (J°) (A.2)

of the space in which F takes values. Note that dim U =N — M and dim ¥V = M. According to Eq. (A.1),
we decompose # — u in Eq. (5) into two components as

M
u:u2+2wjry_,+w (A.3)
J=1
with
M N
> wmeker (1), W= Y wmn, €U,
= =M+l

where € indicates that the vector on the left belongs to the space on the right.
Then, the full system (1) of equations is decomposed into two parts:

M

q?F(ungijanrW,ﬁan,v)O, i=1,...,M, (A.4)
=
M ~

qiTF<u2+ijqj+w,]‘co+f,v)—0, i=M+1,...,N. (A.5)
=

Note that the system of Eqgs. (A.4) and (A.5) has been diagonalized by pre-multiplying ' and using the
transformation equation (A.3). By the implicit function theorem, Eq. (A.5) can be solved for w as

w=o(w,f,») (A.6)
uniquely in the neighborhood of (w,#,f,v) = (0,0,0,%"), where w = (wy, ... ,WM)T. Substitution of this
into Eq. (A.4) yields the reduced system of bifurcation equations

F(w,fv)=0 (A7)
with

Ew,fov) =0 Fl +w+ow,fv), 0+ f,v), i=1,....M. (A.8)
Putting v = v’ + ed (cf., Eq. (3)), we use a short-hand notation

Fw,f,¢) = F(w, V" + ed) (A9)

and an alternative form,
F(w,f,e) =0, (A.10)

of the system of bifurcation equations (A.7).
A.2. Formulation of finite—strain elastoplasticity

Here, we describe the boundary value problem for the classical rate-independent plasticity model. By
using the updated-Langrangian formulation, we provide the rate form of the momentum balance equation



1670 S. Okazawa et al. | International Journal of Solids and Structures 39 (2002) 1651-1671

in context of finite element (FE) analyses. Elaborate discussions of this type of formulation are found in
Bathe (1996) and Simo and Hughes (1998).

Let # C #"™ (ngm = 1,2 or 3) be the reference configuration of an elastic-plastic solid with material
particles denoted by X € 4 and subject to deformation ¢ : #+— #"9, with J := det Vye > 0. We let 0% be
the boundary of # and assume that the deformation is prescribed on 0,% C 04 as ¢ = ¢, whereas nominal
traction vector T is prescribed on 0,4 C 04, with nominal stress tensor P and unit normal N, as PN = T.
We consider the quasi-static equilibrium problem with the given body force B in 4.

In the current configuration ¢(%), Kirchhoff stress tensor t and velocity field v := @ o ¢! are used to
describe the equilibrium state. In terms of admissible spatial velocity field # in an appropriate function
space 7, the rate form of the linear variational equation of this problem is given by

1

d . d ;

Vn:(er+§£’Ur)—v: b-n—v+/ t-nds, nev, (A.11)
o(#) S e S o

where b and # = on are spatial representations of B and T, respectively, with the Cauchvy stress ¢ and unit

normal n on 0,¢. Here, 7 is the Lie derivative of t and related to its Jaumann rate t as

Jvt:z'—dr—‘cd =a:d, (A.12)

where d is the spatial rate-deformation tensor and a are the symmetric moduli.

In the formulation and numerical analyses, we simply assume that the material reveals isotropy and that
elastic strains are small compared with plastic ones. Also, by assuming that the plastic deformation is
incompressible, we neglect volumetric change of this metal by J ~ 1 so that the classical J, flow theory in
plasticity can be extended to a finite strain range. These assumptions are valid for the metal specimens
under consideration whose constitutive equation is given in terms of the rate form

T=c:d, (A.13)

in which the symmetric moduli ¢ take the same constant values ¢© as those in linear elasticity for elastic
deformation and, for plastic flow,

e 9#2 1 / /
cC=~¢ —m(;)(ﬂ ®O') (A14)

Here, p is the shear modulus, A’ is the plastic modulus that is obtained as the derivative of Eq. (24),  is the
equivalent stress and ¢’ is the deviatoric stress tensor.
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